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SUMMARY

This paper improves and generalizes to multi-layer systems the shallow-water solver presented in
[Bermúdez et al., IMA J. Numer. Anal., 11, 79–97 (1991)]. The model equations are discretized in time
using the method of characteristics and the Euler implicit method. The space discretization is performed
using the first-order Raviart–Thomas mixed finite element. A formulation of the non-linear equations to
solve at each time step that takes into account regions without water is given, and numerical results are
presented in which this situation takes place for the one-dimensional case. These non-linear problems are
solved by a duality technique with an automatic choice of parameters that greatly improves the
convergence of the algorithm. A preconditioner has been designed for solving the linear problems that
appear at each iteration of the duality method, which significantly reduces the computational cost. This
is illustrated with some numerical examples. Finally, an application of the multi-layer model to a realistic
geometry of the Alboran Sea is presented, giving good results from a qualitative point of view. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The goal of this paper is to improve the shallow-water solver presented by Bermúdez et al. in
[1] and generalize it to a multi-layer system. This solver has been successfully used by these
authors in the simulation of tidal currents in estuaries. Besides its good stability properties, we
want to point out here its potential capability for dealing with regions without water appearing
inside the computational domain. Nevertheless, in this case numerical difficulties arise that
until now have been only solved in the one-dimensional case.

The equations are formulated in conservative form and the horizontal viscosity effects are
neglected, so that the system of partial differential equations (PDEs) to solve is hyperbolic. The
discretization in time is performed by using a method of characteristics [3] for the momentum
equation and the implicit Euler scheme for the continuity equation. The first-order Raviart–
Thomas mixed finite element is used to discretize in space.

Regions without water are introduced using a formulation of the boundary value problems
appearing at each time step in the form of a variational inequality. This formulation could not
be introduced with an explicit treatment of the continuity equation. This is the reason for the
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choice of the Euler implicit method to discretize this equation, despite the damping effects
introduced by this choice. At this first stage of our work, these side effects are not very
important, as we are interested in steady states or solutions without sharp gradient regions.
Nevertheless, the model can be used for simulating transient regimes and for capturing shock
phenomena, if small enough time steps are taken. In this case, the additional cost due to the
implicit treatment needs to be reasonable. Therefore, improving the numerical algorithm is the
first goal of this work. Another further development in this direction will be to incorporate
adaptative mesh techniques.

The non-linear problems appearing at each time iteration were solved in [1] by using a
duality method proposed by Bermúdez and Moreno in [2]. A drawback of this method is the
need for a manual choice of two parameters upon which the convergence strongly depends. In
this paper, a variant of this method is proposed, in which the two parameters are replaced by
two functions computed automatically and optimally. This modification dramatically improves
the convergence rate of the algorithm. The convergence has also been improved by the use of
an IC-type preconditioner, well adapted to the characteristics of the linear problems that
appear. We illustrate this with some numerical examples.

The problem that gave rise to the questions addressed in this paper was the modelling of the
dynamics of water masses in the Alboran Sea (the western most part of the Mediterranean). In
this sea, two layers of water can be distinguished: the surface Atlantic water penetrating into
the Mediterranean through the Strait of Gibraltar, and the deeper, denser Mediterranean water
flowing into the Atlantic. The observation of this simplified picture shows that, if a bi-
dimensional model is going to be used to simulate the flow in this region, it is necessary to
consider, at least, a two-layer model. Therefore, the second goal of this work is to generalize
the shallow-water solver to multi-layer systems.

It is interesting that the model to be used allows the presence of zones where the thickness
of one of the layers becomes vanishingly thin. In the Strait of Gibraltar, when strong,
tide-induced currents pass through, the flow shows very large oscillations at the interface. This
can cause deep water upwell such that, in the zone of upwelling, the surface layer of Atlantic
water becomes vanishingly thin. Therefore, we are dealing with a problem analogous to that
of the emergence of land areas in a one-layer system.

We finally present an application of the multi-layer model to a realistic geometry of the
Alboran Sea, giving good results from a qualitative point of view.

2. THE EQUATIONS

We first consider the one-layer case. In [1] the following formulation of the shallow water
equations in flux form is considered:

Í
Ã

Ã

Á

Ä

(Q

(t
+9 · (ū�Q)+

g
2

9(h2+2hH)=gh9H+F, in V× (0, T),

(h

(t
+9 ·Q=0, in V× (0, T),

(1)

where h is the elevation above a reference level (the mean sea level, for example), H is the
depth from the reference level to the bottom of the basin and h=H+h is the thickness of the
layer (see Figure 1). ū is the average velocity through the depth, Q=hū the flux, g the gravity,
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SHALLOW-WATER SOLVER 1039

and F external forces (Coriolis, wind and bottom effects). Here, (0, T) is the time interval when
the flow is studied and V represents the horizontal projection of the volume occupied by water,
whose boundary will be represented by (V.

For the sake of simplicity of the mathematical presentation, let Q ·n=0 at (V and F=0.
These two restrictions will not be imposed in the numerical results where other boundary
conditions are allowed and Coriolis and wind effects are taken into account. In [1], only the
case where h+H\0 is considered, i.e. there is always water above each point of V at any
time.

If regions without water are considered, then h may reach the value −H. To take this
situation into account let us introduce the following notations:

Vt
+ ={x�V: h(x, t)\−H(x)},

Vt
0={x�V: h(x, t)= −H(x)},

St=(Vt
0,

where t� (0, T) represents an arbitrary time level. Observe that Vt
+, Vt

0 and St are subsets of
V. They represent respectively the region occupied by water at time t, the region without water
at the same time level and the boundary between these two regions. The index t is necessary
as these regions can change with time. As the evolution of the boundary between the regions
with and without water depends on the motion of the fluid and on the geometry of the basin,
it is an unknown of the problem, i.e. St has the character of a free boundary. For simplicity,
we assume that it is defined by a regular curve with the equation f(x, t)=0. At St the
conditions must be h= −H and ((f/(t)+9f ·u=0. This latter condition means that
particles at the water–land boundary remain there.

In order to establish the set of equations in the general case, observe that in Vt
+, Equations

(1) remain valid, while in Vt
0 they simplify to Q=0, h= −H, and let us consider the following

notations:

Q+ ={(x, t)�V× (0, T): x�Vt
+},

Q0={(x, t)�V× (0, T): x�Vt
0},

Figure 1. Notations.
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S={(x, t)�V× (0, T): x�St}.

Now, Q+, Q0 and S are subsets of the space–time domain V× (0, T). They respectively
represent the region occupied by water, the region without water and their boundary in the
space–time domain. Therefore, ‘x�Vt

+’ is equivalent to ‘(x, t)�Q+’ and both formulae mean
that there is water above the point x of V at time t. The introduction of these space–time
regions allows us to specify the domain of the general equations

(Q

(t
+9 · (ū�Q)+

g
2

9(h2+2hH)=gh9H in Q+,

(h

(t
+9 ·Q=0 in Q+,

Í
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

Q=0, h= −H in Q0, (2)
(f

(t
+9f ·u=0, h= −H at S,

Q ·n=0 at (V
+ initial conditions.

3. TIME DISCRETIZATION

The discretization in time of the equations is performed by using a method of characteristics
[3] for the convective term in the momentum equation and the implicit Euler method in the
mass conservation equation. Given Qn and hn, the discretized equations are

Í
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

Qn+1

Dt
+

g
2

9((hn+1)2+2hn+1H)−ghn+19H=
JnQn[Xn]

Dt
and

hn+1=hn−Dt9 ·Qn+1 in Vtn+1

+ ,
Qn+1=0, hn+1= −H in Qtn+1

0 ,
hn+1= −H at Stn+1

,
Qn+1 ·n=0 at (V,
Qn+1=un+1hn+1,

(3)

where the subscripts tn+1 indicate the corresponding domains in time t=Dt(n+1) and Stn+1

is the water–land boundary at time t=Dt(n+1). By Xn(x) we denote the position in time tn

of the particle being at point x at time tn+1, i.e. Xn(x)=X(x, tn+1; tn), where t�X(x, t ; t) is
the trajectory of the particle at point x at time t, and, therefore, X(x, t ; t) is the solution of

Í
Ã

Ã

Á

Ä

d
dt

X(x, t ; t)=u(X(x, t ; t), t),

X(x, t ; t)=x.
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Finally, Jn(x)=J(x, tn+1; tn), where J(x, t ; t) represents the evolution of the element of
volume, which is the solution of the following ordinary differential equation:

Í
Ã

Ã

Á

Ä

d
dt

J(x, t ; t)=9 ·u(X(x, t ; t), t) J(x, t ; t),

J(x, t ; t)=1.

The discretization is performed by taking into account the identity

(Q

(t
+9 · (u�Q)=

D
Dt

(JQ),

where D/Dt denotes the total derivative, and using a finite difference scheme to discretize the
derivative.

Observation 3.1
Note that Xn: Vtn+1

+ �Vtn

+ and Xn: Stn+1
�Stn

.

4. VARIATIONAL FORMULATION

Problem (3) is an obstacle-type problem (cf. [4]). In the case studied here, the sea bottom plays
the role of the obstacle. As in many other cases, problem (3) can be formulated as a
minimization problem

1
Dt

&
V

Qn+1(z−Qn+1) dx+gDt
&

V
9 ·Qn+19H(z−Qn+1) dx

+
g

2Dt
(C(hn−Dt9 ·z)−C(hn−Dt9 ·Qn+1))]�L0 n, z−Qn+1�, Öz�V, (4)

where V is the functional space V={6� (L2(V))2: 9 ·6�L3(V); 6 ·n=0 at (V}, � . , . � denotes
the duality between V and its dual V %, L0 n= (1/Dt)JnQn[Xn]+ghn9H and given 6�L3(V),
C(6)=	V c(x, 6(x)) dx with

cx(h)=c(x, h)=Í
Ã

Ã

Á

Ä

1
3

h3+h2H(x)

+�

if h+H]0,

otherwise.

This formulation, which enables taking into account regions without water, can be inter-
preted as the search for the minimum of an energy functional, where the regions with negative
thickness of water are penalized with infinite energy. In this sense, if the functional space V is
thought of as the set of admissibles (or finite energy) fluxes, the introduction of the functional
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C allows us to eliminate the elements of this space leading to a negative thickness for the water
layer.

It has been proved in [1] that if hn�L3(V), JnQn[Xn]� (L2(V))2 and H�C1(V), problem (4) has
a unique solution of Qn+1�V, hn+1�L3(V).

Using the subdifferential of cx(h), Gx(h) (see [5]), problem (4) can be reformulated as a
variational problem:

Find Qn+1�V, un+1�L3/2(V) such that:

1
Dt

&
V

Qn+1 ·z dx−
g
2
&

V
un+19 ·z dx−g

&
V

(hn−Dt9 ·Qn+1)9H ·z dx

=
1
Dt

&
Vtn+1

+

JnQn[Xn] ·z dx, Öz�V, (5)

un+1�Gx(hn−Dt9 ·Qn+1),

Qn+1=un+1(hn+1+H).

Observe that, given x�V, Gx is the multi-variate operator defined by

Gx(h)=(xc(h)=
!h2+2hH(x)

(−�, −H2]
if h+H\0
if h+H=0.

(6)

In the regions of zero thickness, an interval is obtained due to the ‘infinite jump’ of the cx

operator. It can be proved that problems (3) and (5) are formally equivalent (see [6]).

5. NUMERICAL RESOLUTION

The problems to be solved at each time iteration are as follows:

Find (Q, u) such that Öz�V

1
Dt

&
V

Q ·z dx−
g
2
&

V
u9 ·z dx−g

&
V

(h0−Dt9 ·Q)9H ·z dx=�F, z�, (7)

u(x)�Gx(h0−Dt9 ·Q) a.e. x�V,

where h0 would be hn, which is assumed to be known, and �F, z� is the term given by the
method of characteristics. Once solved, the solution at time Dt(n+1) is given by (Q, h=h0−
Dt9 ·Q).

� A first difficulty comes from the fact that the bilinear form appearing,

a(Q, z)=
1
Dt

&
V

Q ·z dx+gDt
&

V
(9 ·Q)(9H ·z) dx,

is not elliptic in V.

To overcome this problem, we introduce the operator Gx
w(h)=Gx(h)−wh= (Gx−wI)(h),

where w\0, to be chosen. Let p=u−w(h0−Dt9 ·Q), where u is the solution of (7). We have
that p(x)�Gx

w(h0−Dt9 ·Q) and
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g
2
&

V
p9 ·z dx=

g
2
&

V
u9 ·z dx−

gw
2
&

V
(h0−Dt9 ·Q)9 ·z dx,

from whence Equation (7) is written as

1
Dt

&
V

Q ·z dx−
g
2
&

V
p9 ·z dx−

gw
2
&

V
(h0−Dt9 ·Q)9 ·z dx−g

&
V

(h0−Dt9 ·Q)9H ·z dx

=�F, z�.

Upon rearranging the terms, (Q, p) is seen to satisfy

1
Dt

&
V

Q ·z dx+
Dt gw

2
&

V
9 ·Q9 ·z dx+Dt g

&
V

9 ·Q(9H ·z) dx

=
g
2
&

V
p9 ·z dx+g

&
V

h0(9H ·z) dx+
gw
2
&

V
h0(9 ·z) dx+�F, z�, p�Gx

w(h0−Dt9 ·Q).

The bilinear form to be considered is now

a(Q, z)=
1
Dt

&
V

Q ·z dx+
Dt gw

2
&

V
9 ·Q9 ·z dx+Dt g

&
V

9 ·Q(9H ·z) dx,

which is elliptic for sufficiently large w and bounded 9H (see [6]). Note that the introduction
of such a parameter as w is simply a mathematical artifice to obtain an equivalent formulation,
but with an elliptic bilinear form.

Written in this form, the problem to be solved is:

Find (Q, p) such that

a(Q, z)=
g
2
&

V
p9 ·z dx+�L, z�, Öz�V, (9)

p�Gx
w(h0−Dt9 ·Q),

where

�L, z�=�F, z�+g
&

V
h0(9H ·z) dx+

gw
2
&

V
h0(9 ·z) dx.

For the numerical solution of this problem, we may think of using a fixed point algorithm:

1. choose p0,

2. solve a(Qn, z)=
g
2

	V pn9 ·z dx+�L, z�,

3. pn+1=Gx
w(h0−Dt9 ·Qn).

Nevertheless, using such an algorithm is not possible as

1. Gx
w is multi-6alued, and

2. Gx
w is not Lipschitzian, therefore, the convergence of the former algorithm cannot be

assured.

� To overcome these new difficulties, following [2] we introduce the Yosida approximation of
the operator Gx

w (see Appendix A), defined for values of l and w, verifying 0BlwB1:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1037–1059 (1999)
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Gx,l
w (h)=Í

Ã

Ã

Á

Ä

2lh+1−lw+2lH−
(1−lw+2lH)2+4lh

2l2

h+H
l

if h]− (1−lw)H−lH2,

otherwise.

The following property holds [2]:

p�Gx
w(h) U p=Gx,l

w (h+lp) for 0BlwB1. (10)

Besides, if 0Blw51
2, Gx,l

w is Lipschitzian with constant 1/l, i.e.

�Gx,l
w (h1)−Gx,l

w (h2)�5
1
l

�h1−h2�, Öh1, h2�R. (11)

Using property (10) the problem to be solved can be written as

Í
Ã

Ã

Á

Ä

a(Q, z)=
g
2
&

V
p9 ·z dx+�L, z�,

p=Gx,l
w (h0−Dt9 ·Q+lp),

(12)

which suggests the numerical scheme,

Algorithm 1

Choose p0,

a(Qn, z)=
g
2
&

V
pn9 ·z dx+�L, z�, (13)

pn+1=Gx,l
w (h0−Dt9 ·Qn+lpn),

taking l and w (fixed) such that lw51
2 for the operator Gx,l

w to be Lipschitzian.

The convergence of Qn to Q is assured at least in norm L2 if lw=1
2.

A disadvantage of the methodology followed in solving the problem (2) comes from the need
of an a priori choice of the parameters l and w (taken as fixed in the original works of
Bermúdez et al. [1,2]). This drawback has been optimally solved for the problem treated in this
study. For further details on the calculation of these parameters and on the convergence of the
algorithm in more general problems see [7]. A second difficulty arises when regions without
water appear, i.e. when h= −H, somewhere in the domain. In that case, the problem is how
to compute the velocity. In what follows, we try to clarify these two ideas.

5.1. Calculation of l, w

The performance of the method strongly depends on a good choice of the parameters (l, w)
and, in general, this choice it is not easy to perform as l and w have no relationship with the
physics of the problem. Let us consider problem (12): if h=h0−Dt9 ·Q were known a priori,
p(x) would be the solution of the equation p(x)=Gx,l

w (h(x)+lp(x)). In that case, a
fixed-point algorithm can be used for computing p : pn+1(x)=Gx,l

w (h(x)+lpn(x)). The
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optimal l should be that making the iteration function have a minimal slope at the fixed point
p(x). Here, the iteration function is g(q)=Gx,l

w (h(x)+lq). Let us study two cases: the case
when h\−H everywhere and the case for which regions without water appear.

Case 1. h\−H everywhere.
Assume h\−H in all the domain. In this case, for Gx

w being univalent, the fixed point can
be computed explicitly since

p(x)=Gx,l
w (h(x)+lp(x)) U p(x)=Gx

w(h(x))=h(x)2+2h(x)H(x)−wh(x).

Therefore, the objective is to determine the parameter l such that �g %(p)�= �g %(h(x)2+
2h(x)H(x)−wh(x))� is minimal, with w=1/2l. The most favourable case would be to
determine l such that

g %(h(x)2+2h(x)H(x)−wh(x))=0.

Operation results in the optimal lx being given by 1/[4(H(x)+h(x))] (see [6]).
If a fixed-point iteration is to be performed:

qn+1=Gx,l
w (h+lqn), (14)

it would be optimal to do so with the form

qn+1(x)=Gx,lx

wx (h(x)+lxqn(x)), (15)

as second-order convergence would be achieved. Nevertheless, h is unknown. In fact, we can
consider Algorithm 1 as an approximation of (15), where h is approximated by h:h0−
Dt9 ·Qn+1 at each iteration. The calculation of l also requires us to know h. For a small Dt,
a reasonable approximation is h:h0.

Therefore, the following algorithm is proposed:

1. Take lx=1/[4(h0(x)+H(x))], Öx�V.
2. Take wx=1/2lx.
3. p0=h2

0+2h0H−wxh0= −h0
2.

4. For n=0, 1, . . .

Í
Ã

Ã

Á

Ä

a(Qn, z)=
g
2
&

V
pn9 ·z dx+�L, z�,

pn+1=Gx,lx

wx (h0−Dt9 ·Qn+lxpn),

where the bilinear operator is now given by

a(Q, z)=
1
Dt

&
V

Q ·z dx+
Dt g

2
&

V
wx9 ·Q9 ·z dx+Dt g

&
V

9 ·Q(9H ·z) dx, (16)

and

�L, z�=�F, z�+g
&

V
h0(9H ·z) dx+

g
2
&

V
wxh0(9 ·z) dx.

An advantage of computing l and w in this way is that it avoids the a priori choice of these
parameters. A second benefit is the saving in computer time as shown by the results in Section
9, where some numerical examples are presented (see Tables I and II). The optimal choice of
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Table I. Performance of Algorithms 1 and 2. Test 1: channel coarse mesh

Algorithm k CPU time Linear Duality Number non-zeros

0 11 015 30–35 75–80 53951
40 4112 10–121 75–80 16 712

0 1208 25–28 7–102 5395
20 726 11–142 7–10 10 573
40 690 9–11 7–10 13 7042
50 631 8–92 7–10 16 789
60 a93 6–7 7–102 19 767
70 570 4–52 7–10 23 217
90 522 3–4 7–102 30 642

Linear, number of iterations required for solving the linear problems; duality, idem for
the duality method.

l and w also avoid/mitigate some problems of convergence that may arise with the original
method when vanishing thickness of water appeared.

A disadvantage we mention is that the ellipticity of the bilinear form may be lost (if
h+H�1[lx�1[wx�1) or the conditioning of the matrix may deteriorate (if h+H�1[
lx�1[wx�1). In practice, to avoid this, wx is chosen between two bounding values:
wmin5wx5wmax (see [6] for the calculation of these values). Also, the possibility exists of
recalculating lx and is given by

lx=
1

4(h0(x)−Dt9 ·Qn+H(x))
,

when necessary.

Case 2. h+H=0 in some parts of the domain.
If x�V is such that h(x)+H(x)=0 then the equation p(x)=Gx,l

w (h(x)+lp(x)) has an
infinite number of solutions: p� (−�, −H2+wH ].

In effect, h+lp= −H+lp5−H−lH2+lwH= − (1−lw)H−lH2 and therefore,
Gx,l

w (h+lp)= (h+lp+H)/l=p.
Besides, if p� (−�, −H2+wH)

g %(p)=l
dGx,l

w

dh
(h+lp)=l

1
l
=1.

Table II. Performance of Algorithms 1 and 2. Test 2: channel refined mesh

k CPU time Linear Duality Number non-zerosAlgorithm

1 0 303 731 145–150 75–80 24 390
25 1552 0 7–10 24 390145–150

62 08020 7–10110–11523 7902
7–102 126 71540 3921 13–15

10–11 7–10 156 4732 50 3393
2 3010 7–8 7–10 187 56460

4–5 7–10 223 1462 70 2529
242190 288 8537–102–32

Linear, number of iterations required for solving the linear problems; duality, idem for
the duality method.
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In the limit case, p= −H2+wH, we have g−% (p)=1, g+% (p)= −1. This situation occurs for
any l and, as consequence, no optimal l can be chosen.

The following algorithm suggests itself for taking into account the remarks above on an
optimal computation of l and w :

Algorithm 2

1. Choose a maximal value for lx avoiding degeneracy of the bilinear form: lmax.
2. Known h0, compute

lx=Í
Ã

Ã

Á

Ä

1
4(H+h0)

lmax

if h0\−H+
1

4lmax

,

otherwise.

3. Take wx=1/2lx.
4. Choose

p0=
!h2

0+2h0H−wxh0

−H2+wxH
if h0\−H,
if h0= −H.

5. For n=0, 1, . . .

Í
Ã

Ã

Á

Ä

a(Qn, z)=
g
2
&

V
pn9 ·z dx+�L, z�,

pn+1=Gx,lx

wx (h0−Dt9 ·Qn+lxpn).

5.2. Calculation of u

Another numerical (and theoretical) difficulty arises in the computation of the velocity, u.
The formula u=Q/h cannot be used for obtaining u at St if regions without water (Vt

0) appear
in the domain. Indeed, we noted that at St, Q ·n=0, h=0, but u ·n"0 in general.

Therefore, when computing u an indetermination appears which avoids dividing Q by h. We
propose, here, to calculate u with the aid of a supplementary equation,

(u
(t

+u ·9u+g9h=F in Vt
+,

i.e. to use the momentum conservation equation in the variables (u, h) in the region with water
Vt

+. The boundary conditions, would then be

– u ·n=0 in the boundary of V, where Q ·n=0,
– where conditions are over h, we keep the same boundary conditions,
– at �t, h= −H.

For the sake of simplicity, assume Q ·n=0 at (V. The cost of adding this new equation is not
very high. Semi-discretizing in time again using the method of characteristics, yields
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1
Dt

un+1+g9hn+1=F+
1
Dt

un(Xn),

un+1 ·n=0 at (V,

hn+1= −H at Stn+1
,

resulting in

1
Dt

(un+1, z)=g(hn+1, 9 ·z)+ (F, z)+
1
Dt

(un(Xn), z)+g
&

Stn+1

H(z ·n) ds,

Öz�{z�H0(div; V): z ·n=0 at (VS(Vtn+1

0 }. (17)

Notice that this calculation is done after Qn+1 and hn+1 are obtained, which means that
hn+1 is known and the function Xn has been approximated. The mass lumping technique is
used.

6. SPACE DISCRETIZATION

To discretize problem (12) in space, Raviart–Thomas [8] mixed finite elements have been used.
Let th be a family of triangulations and consider two finite-dimensional vector spaces. Vh is the
space of vector functions that are polynomials of degree one on each triangle, which is
discontinuous on the edges of the elements but whose normal components are continuous and
constant there. The normal components on each side are taken as degrees of freedom.

On the other hand, let Mh be the space of piecewise constant functions:

Mh={hk : hh�K�P0, ÖK�th}.

Then the discretized problem consists of finding Qh
n+1�Vh and hh

n+1�Mh such that

Í
Ã

Ã

Ã

Ã

Á

Ä

a(Qh
n+1, zh)=

g
2
&

V
ph

n+19 ·zh dx+�Lh, zh�,

ph
n+1=Gx,lx

wx
g
2

(hh
n−Dt9 ·Qh

n+1+lxph
n+1),

hh
n+1=hh

n−Dt9 ·Qh
n+1.

(18)

The same discretization is used in (17).
The numerical algorithm that results is

Given u0, h0, Q0=u0(h0+H).
For n=0, 1, 2, . . .
� approximate Xn=X(x, tn+1; tn),
� calculate Qh

n+1, hh
n+1 solving (18),

� determine Vtn+1

+ , Vtn+1

0 , Stn+1
,

� compute uh
n+1 using (17).

From the algorithm point of view, the most delicate part is the detection of Vtn+1

0 . This is
done by removing/adding elements. Initially, implementation has been done for the one-
dimensional case, producing good results. Presently, we are working on the generalization to
two-dimensional domains.
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7. RESOLUTION OF THE LINEAR SYSTEMS. PRECONDITIONERS

As we have shown, at each time step tn, the numerical scheme used here to discretize the
shallow-water equations requires the solution of a fixed-point problem (step (5) in Algorithm
2). At each iteration of the fixed-point algorithm we have to solve a linear system of the form

AnQ=b,

where An is the matrix appearing in the space discretization of the bilinear form (9). Therefore,
An is unchanged during the solution of the fixed point problem, but it varies with time through
its dependence on wx and must be freshly computed at each time step. Thus, the coefficients
of An must be recalculated at each iteration in time. Nevertheless, the zero-structure of the
matrices, which depends on the mesh connectivities, remains unchanged. Matrices An are
regular but not necessarily symmetric and, in general, their conditioning numbers, K(An), are
high depending upon wx. This entails an additional difficulty if a generalized conjugate
gradient method is going to be used. Consequently, a good preconditioner Cn must be chosen.

To improve the convergence speed of the method, we initially use the preconditioner IC(0),
i.e. the preconditioner matrix is an LU incomplete factorization with the same zero-structure
as the matrix. Although this preconditioner appears efficient in numerical simulations per-
formed with small time steps and w fixed, the computing time increases considerably with
increasing time steps and large variations of wx, sometimes even leading to problems of
convergence. A detailed analysis of the linear problems to be solved lead us to consider other
preconditioners.

From the expression of the bilinear form of (9) it can be proved that

K(An+1)5cnK(An),

where cn is a constant depending on the fluctuation of wx
n and wx

n+1. As wx
n depends on the

depth of the water column (is twice the thickness of the layer), and the fluctuations of this
thickness are supposed to be small from one time iteration to the next one, we can expect that
cn:1. Keeping this in mind, it stands to reason that if Cn is a good preconditioner for An it
will also be so for An+1.

A first approximation consists in determining the zero-structure of all the preconditioners at
the first time iteration. This structure is to be conserved along the whole integration. The
procedure to build the preconditioners can be split in the following steps:

1. Compute the LU-complete factorization of the matrix A0 at time t=0.
2. For each diagonal di of the matrix L (respectively U) compute the norm


di
=
'Sl=1

m− i a l+ i,l
2

m− i
,

where m represents the number of degrees of freedom and the index i gives the ith diagonal
(i=0 for the principal diagonal).

3. The k% of the non-zero elements of L and U (k being a parameter to be provided to the
algorithm) is retained. This is done by the elimination of the diagonals with smallest norms.

4. Cn=C0, Ön.

This preconditioner, which we denote as IC(k), is efficient for a suitable choice of k even
with large time steps. Nevertheless, if the number of iterations to be performed is too high,
problems of convergence may arise; this may happen when K(An) strongly differs from K(A0).
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J. MACÍAS ET AL.1050

To avoid this problem, the coefficients of the preconditioning matrix Cn can be recalculated
each time a certain number of iterations has been completed, but using the zero-structure of
the preconditioning matrix determined at the first iteration. In order to do this, the incomplete
LU factorization of An is performed. By this stratagem, we avoid computing a complete LU
factorization and the calculation of the diagonal norms. This modified preconditioner,
although computationally slightly more expensive than the previous preconditioner, is very
efficient with any time step and does not present convergence problems (see Tables I and II for
numerical results). For a detailed description on the preconditioners used see [9].

8. THE MULTI-LAYER MODEL

A sharp density gradient can be generated in the sea water by solar heating of the upper layer
or in a strait connecting two basins where waters have different densities, as is the case in the
Strait of Gibraltar. In these cases, fresher water flows over more saline, and consequently,
heavier water. It may even happen that water in adjacent layers flows in opposite directions.
In that situation, a shallow water model is not suitable. On the one hand, density variations
are important; on the other hand, large velocity fluctuations along the water column can be
expected.

In this section, a model is proposed that considers sea water as composed of several
immiscible layers of different constant densities. In such a model, waves appear not only on the
surface but also in the interface between the layers. It will be assumed that phenomena to be
modelled have wavelengths large enough to make appropriate the shallow water approxima-
tion in each layer.

8.1. The general model

In this section, we use a generalization of the notation introduced in Figure 2 for the
two-layer case. For this case, two constant reference levels, A1 and A2, have to be chosen.
More precisely, A2 is the reference level for the deeper layer and A=A1+A2 is the reference
level for the upper one (mean level of the interface and sea level respectively). In the general
case, as many reference levels as layers must be taken.

The equations obtained in the general case of m layers are (see [10,11] for further details on
the derivation of these equations):

(a) First layer

(Q1

(t
+9 · (u1�Q1)+

g
2

9(h1
2+2h1H1)=gh19H1,

(h1

(t
+9 ·Q1=0.

(b) kth layer

(Qk

(t
+9 · (uk�Qk)+

g
2

9(h̄k
2+2h̄kH( k)=gh̄k9H( k,

(hk

(t
+9 ·Qk=0.

where
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h̄k=hk+
r1

rk

h1+ · · · +
rk−1

rk

hk−1

and

H( k=Hk−
r1

rk

h1− · · · −
rk−1

rk

hk−1.

(c) Lower layer

(Qm

(t
+9 · (um�Qm)+

g
2

9(h̄m
2 +2h̄mH( m)=gh̄m9H( m,

(hm

(t
+9 ·Qm=0.

where

h̄m=hm+
r1

rm

h1+ · · · +
rm−1

rm

hm−1

and

H( m=Hm−
r1

rm

h1− · · · −
rm−1

rm

hm−1.

The reason for these new ‘overbar’ variables is to produce exactly the same equations for
any layer as in the one-layer case. Thus, the non-linear operator studied above will appear
again in the solution of the equations at each layer, and the problems to be solved become
analogous of those already studied.

Figure 2. The two-layer model scheme.
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8.2. Numerical resolution

For the sake of simplicity, in this section we present the numerical resolution of the
two-layer system. The generalization to the multi-layer case is straightforward and has already
been implemented [10]. The algorithm used for solving the equations at each layer is the same
as that presented for the one-layer case.

Let Dt be the given time step and let Qi
n, h i

n be Qi and hi approximations at time nDt. If Qi
n,

h i
n, i=1, 2 are known, then Qi

n+1, h i
n+1, i=1, 2 are computed as follows:

(a) Second layer
Using the same as in the lower layer (here the second) the following equality holds:

(h2

(t
=
(h2

(t
,

and discretizing the mass conservation equation for this layer equation by the implicit Euler
method, we have

h2
n+1=h2

n−Dt9 ·Q2
n+1.

The time discretization of the momentum equation is carried out using the method of
characteristics. Then the unknowns h̄2

n+1 and H( 2
n+1 are computed, where h̄2 and H( 2 are given

as above. However, the thickness of the first layer at time (n+1)Dt, which has not yet been
computed, appears in these expressions. In order to uncouple the resolution of the equations
corresponding to each layer, the following explicit approximation is considered:

H( 2
n+1=H2−

r1

r2

h1
n,

h̄2
n+1=h2

n+1−
r1

r2

h1
n=h2

n−Dt9 ·Q2
n+1+

r1

r2

h1
n.

With this approximation, the non-linear boundary problem, which must be solved to compute
Q2

n+1 is identical to those arising in the one-layer model. It is just possible that this explicit
approximation may affect the stability properties of the algorithm: theoretical studies of the
question remain to be done. In any event, in the numerical computations done so far no
problem of stability has occurred.

(b) First layer
Using the same as that for any layer not the lower, we have

(hk

(t
=
(hk

(t
−
(hk+1

(t
.

In the two-layer case, this gives

(h1

(t
=
(h1

(t
+9 ·Q2.

Using this expression, the continuity equation for the first layer can be rewritten as

(h1

(t
= −9 ·Q1−9 ·Q2.

The implicit Euler discretization then gives
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h1
n+1=h1

n−Dt9 ·Q1
n+1−Dt9 ·Q2

n+1. (19)

Notice that, since the computations begin from the deeper layer, Q2
n+1 is known at this

algorithm step; therefore, a new explicit approximation is not necessary.
Again, the momentum equation is discretized using the method of characteristics. On

applying (19) to the resulting expression, a boundary problem is obtained with Q1
n+1 as the

only unknown. This problem is analogous to that occurring in the discretization of the second
layer equation, and is solved using the same algorithm.

9. NUMERICAL EXAMPLES

9.1. A one-dimensional test case

In order to demonstrate the capability of the numerical algorithm presented in this
contribution in handling regions without water, in this first example we show some results for
a one-dimensional case. The domain is the interval [0, 10] and the depth is given by the
function

H(x)=1+cos
�2px

5
�

.

Initially, the water is at rest. Then, water leaves the domain through the edges x=0 and
x=10, where outflowing boundary conditions are prescribed. Two regions without water
develop on the slopes of the hills, while the water within the valley remains at rest. Figure 3
depicts the time evolution of the water in this situation. In these figures, the water surface is
represented by the solid line, land topography by the dashed line and the dotted line depicts
the level of the water at rest.

9.2. A channel

This section presents a comparison between Algorithm 2 and the Bermúdez–Moreno
algorithm with constant coefficients (Algorithm 1). The computational domain for this
comparison is a 64 km long (x1), 21 km wide (x2) channel (dimensions comparable with those
of the Strait of Gibraltar). A 1 Sv (1 Sv=106 m3 s−1) input flow is imposed at the edge of the
channel located at x1=0. The same output is imposed at the other end of the channel located
at x1=64. At the channel walls, the normal component of the flow is set equal to zero.
Initially, the water is taken at rest and with no elevation. The depth of the channel is given by
the following sinusoidal function:

H(x1, x2)=90 cos
� x1

4000
+

p

2
�

+100.

Problem (2) has been solved on the domain described above for times leading to a stationary
state using Algorithms 1 and 2. Two different meshes have been considered for this compari-
son: first, a coarse mesh containing 1111 nodes, and second, a finer mesh with 4950 nodes. In
Algorithm 1, the constant values of l and w are taken as the mean of the two extreme optimal
values obtained when the stationary state is reached with Algorithm 2. The time step is
Dt=120 s, and with both algorithms the stationary state is achieved after 800 iterations
(:26.6 h).
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Table I summarizes some data referring to Test 1: a channel problem with the coarse mesh
computations. The total CPU time consumed by both algorithms (using a machine with a
Pentium 150 MHz processor and the Linux operating system) is displayed for a range of values
of the parameter k. Also shown are the mean number of iterations needed by the iterative
method to solve the linear systems and by the duality method used to solve the non-linear
problems. The number of non-zero elements in the preconditioning matrices is also shown.
Notice that, in spite of the additional cost due to matrix and preconditioner computations for
Algorithm 2 (matrices depends on wx and the coefficients of the preconditioning matrix are
recalculated every ten iterations) its superior rate of convergence results in a much lower total
CPU time consumed than for Algorithm 1.

Figure 3. Emergence of land areas in a one-layer system: initial state and time steps 25, 100 and 150.
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Figure 4. Test 1: coarse mesh. CPU time (left panel) and mean number of iterations needed to solve the linear
problems (right panel) as a function of k for Algorithm 2.

Figure 4 shows the CPU time and mean number of iterations needed to solve the linear
problems as functions of the parameter k for Algorithm 2. In both graphs, notice the decrease
with increasing k. This feature need not always occur; an inflection in these curves may appear
at some other value of k. Notice, nevertheless, that the reduction in computing time and
number of iterations is steepest for values of k between 0 and 20.

A comparison of convergence curves for Algorithms 1 and 2 (k=40) at time steps 100 (left
panel) and 225 (left panel) is displayed in Figure 5. The abscissa represents the number of
iterations of the duality algorithm and the ordinate is the error in logarithmic scale.

Figure 5. Convergence curves for the duality algorithm. Solid lines for Algorithm 1 and dashed lines for Algorithm
2 with k=40. The left graphic is for iteration 100 and the right graphic for iteration 225.
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Figure 6. Test 2: refined mesh. CPU time (left panel) and mean number of iterations needed to solve the linear
problems (right panel) as a function of k for Algorithm 2.

Table II gathers the data from the numerical experiments performed with the refined mesh:
Test 2. Note that if Algorithm 1 is used, the total CPU time is as much as 303731 units, while
if Algorithm 2 with k=40 is used, the computer time is only 3921 units. This represents a
reduction in CPU time of over 1/75 for an increase of just five times of the memory required.

Finally, Figure 6 shows for Algorithm 2 the total CPU time (left panel) and the mean
number of iterations needed to solve the linear problems (right panel) as a function of the
parameter k. Again, a larger rate of decrease is seen in both quantities for values of k between
0 and 40.

9.3. The Alboran Sea

Observational data (satellite, aircraft and in situ data) have shown that two anti-cyclonic
gyres, the western and the eastern gyres, are major ocean features of the Alboran Sea [12]. A
large variation in the structure, size and position of these gyres have been observed. It may
even happen that one or the other gyre disappears during certain periods, although the
disappearance of both gyres at the same time has never been observed. This changing structure
is due to several causes: wind, bottom and Coriolis effects, properties of the incoming Atlantic
water (vorticity, angle, internal waves, etc.).

The results presented in this section are part of a larger set of numerical experiments aimed
to study the gyre and its variations with different constant winds (see [6]). Bottom and Coriolis
effects were taken into account. The two-layer model was used: the upper layer (initially at 80
m depth) represents for the inflowing Atlantic water that enters through the Strait of Gibraltar
and exits into the western Mediterranean basin. In this layer, the constant value for the water
density is taken to be equal to 1027 kg m−3. The lower layer stands for the Mediterranean
water pouring out from the eastern Mediterranean into the Atlantic. The constant density
value taken in this layer was 1029 kg m−3.

The physical domain considered presents four different boundaries. Two ‘natural’
boundaries, corresponding to the Spanish and Moroccan coasts, and two ‘artificial’ boundaries
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limiting the computational domain to the east and west. The western boundary near Tarifa, in
the Strait of Gibraltar, and the eastern limit constituted by the sides of a large rectangle. These
sides follow the orientation of the Spanish and African coasts at that part of the Mediter-
ranean. The meshes were generated from digitalized cartographic data provided by the
Instituto Español de Oceanografia (IEO). When real bottom topography was considered, the
bathymetry function H was computed from digital cartographic data by means of an
automatic interpolation process over the mesh vertices. From this discrete function and the
first layer mesh, the second and subsequent layer meshes are automatically constructed
suppressing the spare triangles, i.e. the elements k in the first layer, with H(k)\−80 m are
suppressed to obtained the second-layer mesh.

The boundary conditions considered were as follows: at the first layer, the input flux was
imposed over the Strait of Gibraltar. A total flux of 1 Sv was taken, which is the estimate
corresponding to the annual mean of the Atlantic input flux (see [13]). The profile considered
for this input flow was designed to fulfil a certain criterion of conservation of the potential
vorticity (see [6,14] for further details). On the sides of the rectangle, coast conditions were
imposed at both layers. For the second layer at the Strait, an output symmetric to the first
layer input was imposed. For preserving the mass conservation at each layer was necessary to
consider an exchange between layers of 1 Sv. This exchange was imposed just in the most
eastern part of the domain, the region limited by the rectangle. As external forcing, a 20 km
coastal eastern wind of 10 m s−1 was imposed, trying to simulate the effects of coastal winds
on the development of the gyres. The time step was 15 min.

As initial conditions, the results shown here restart from a previous experiment where a
stationary state was reached. This experiment was performed with the same boundary
conditions described above but without wind, and started from a resting sea (i.e. elevation and
fluxes initially set to zero).

Figure 7. First layer simulated velocity field (see text for details).
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Figure 7 shows the first layer velocity field for the experiment described above after 3000
iterations (:1 month real time). It illustrates a ‘typical’ two anti-cyclonic (clockwise in the
Northern Hemisphere) gyre configuration as found in many observational studies, with the
western anti-cyclonic gyre confined to the western most part of the Alboran Sea and to the
south of the inflowing Atlantic water. To the north of the inflowing current, cyclonic
(anti-clockwise) structures often form: they are also present in this simulation. Finally, a
second anti-cyclonic gyre usually forms in the eastern basin, to the east of Cape Tres
Forcas as shown in Figure 7. For further details on the Alboran Sea dynamics, see the
introduction to [6] and references therein.

The simulated elevation of the sea surface is presented in Plate 1, while Plate 2 shows the
movement of the interface. The anti-cyclonic gyres tend to accumulate water at their inte-
rior, producing an elevation of the sea surface and a sinking of the interface. The opposite
occurs for cyclonic gyres. These features can be observed in the simulation shown here.

10. FINAL REMARKS

It has been shown that the duality algorithm considered in this paper greatly improves
convergence speed and, consequently, the CPU time needed to solve the shallow-water
problems that have been proposed when the automatic choice of parameters and the family
of preconditioners described in previous sections are used.

We remarked that the problems put forward in this contribution arose from our interest
in modelling the dynamic features of the Alboran Sea. The numerical model chosen seems
able to simulate a number of the phenomena taking place in this region of the Mediter-
ranean (see [6] for further details) with good accuracy and at a reasonable computational
cost.

In order to improve the model, we are carrying out the following research activities:

� Dealing with vanishing thickness regions. The use of penalization techniques to improve
convergence, and the generalization of the results presented here for the one-dimensional
example to the two-dimensional case and, as a final goal, to the multi-layer system, are the
main lines of research on this topic.

� Generalizing the choice of boundary conditions. Studying the possibility of using data
assimilation techniques.

� Implementation of adaptative mesh techniques.
� Implementation and comparison of other time and/or space discretizations, including

second-order schemes.
� Testing the model under more realistic wind and boundary conditions. Comparing the

results with previous works and experimental measurements.
� Application of the model to the study of the variability of the Alboran Sea gyres.
� Analyzing the mathematical model. At the present moment, we are trying, in collaboration

with P. Orenga (Université de Corse), to generalize to the multi-layer case the results
proved for the one-layer system (cf. [15]).
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APPENDIX A

Let E be a real Hilbert space and w a real number. A multi-valued operator G in E is called
a maximal-M(w) operator if G+wI is a maximal monotone, where I is the identity operator
(see [16]).

Let l\0 be a real number such that 0BlwB1. Then, the operator Jl= (I+lG)−1 is
defined over all E and is univalued. Moreover, it is a Lipschitz function with constant
(1−lw)−1. In this case, we can define the Yosida approximation of G by

Gl=
I−Jl

l
. (20)

The following results can be shown (see [17]):

1. If lw51
2, Gl is a Lipschitz continuous function with constant 1/l.

2. If lwB1, the following statements are equivalent:
� u�G(u);
� u=Gl(u+lu).
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10. M.J. Castro and J. Macı́as, Modelo Matemático de las Corrientes Forzadas por el Viento en el Mar de Alborán, vol.
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Plate 1. Simulated elevation of the sea surface.

Plate 2. Simulated elevation/sinking of the interface above/under its mean level, located this at 80 m depth.
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